Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
نویسندگان
چکیده
منابع مشابه
Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
This paper presents necessary and sufficient optimality conditions for problems of the fractional calculus of variations with a Lagrangian depending on the free end-points. The fractional derivatives are defined in the sense of Caputo.
متن کاملFractional variational problems with the Riesz-Caputo derivative
In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for sever...
متن کاملFractional variational calculus for nondifferentiable functions: generalized natural boundary conditions
Fractional (non-integer) derivatives and integrals play an important role in theory and applications. The fractional calculus of variations is a rather recent subject with the first results from 1996. This paper presents necessary and sufficient optimality conditions for fractional problems of the calculus of variations with a Lagrangian density depending on the free end-points. The fractional ...
متن کاملVariational Problems Involving a Caputo-Type Fractional Derivative
We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functiona...
متن کاملMultiobjective fractional variational calculus in terms of a combined Caputo derivative
Abstract. The study of fractional variational problems in terms of a combined fractional Caputo derivative is introduced. Necessary optimality conditions of Euler–Lagrange type for the basic, isoperimetric, and Lagrange variational problems are proved, as well as transversality and sufficient optimality conditions. This allows to obtain necessary and sufficient Pareto optimality conditions for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2010
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2010.02.032